*spirals*. The basic concept of what a spiral should be, in polar coordinates, is any plot $r$ varying with $\theta$, $r=f(\theta)$, where $f$ is always increasing, and $\theta$ is allowed to go beyond the usual range of $0\leq \theta < 2\pi$ (or $-\pi < \theta \leq \pi$). The most fundamental one, of course, is $r = \theta$, which says the distance from the origin is proportional to the amount you've wound around the origin:

(here the angle is in radians and the equation is $r = \theta$). Of course, some people thought this was a bit boring, so Fermat spiced it up and thought what if we make the spirals wind tighter as you go around? Basically, make it a concave-down, increasing function, $r = \sqrt{\theta}$. Actually, it's more fun to also consider $r = -\sqrt{\theta}$:

($r=\sqrt{\theta}$ is in blue, and $r = -\sqrt{\theta} is in yellow$)

This of course could more succinctly be written $\theta = r^2$. But perhaps the second-most famous, due to its ubiquity in nature (because stuff tends to grow exponentially) is the famous logarithmic spiral $r = e^{c \theta}$ or $\theta = \frac{1}{c} \log r$, which magnifies every time you spin it.

($r=e^{\theta/5}$)

And finally, where would we be in polar graphs if we didn't have the analogue of stuff with asymptotes? Consider $r^{-2} = \theta$ (instead of $r^+2$):

This is called the

*lituus of Cotes.*There's all sorts of curves from back in the day with very funny names; I used to look for a lot of them on the MacTutor History of Math Page (more specifically, its Curves Index).
There's one other spiral that's my favorite, but (1) it isn't polar, and (2) there's a lot of interesting differential geometry going on in it, so I'm saving it for another post.