Thursday, April 28, 2016

Variance Solids: Volumes and $\mathscr{L}^2$, Part 2


Last time, we talked about how the classical $\mathscr{L}^2$ norm of a (one-variable) function could be visualized as a solid consisting of squares. Of course, there's another formula that is defined by almost the same formula, with an extra factor of $\pi$: the solid of revolution of the function about the $x$-axis: \[
V = \int_a^b \pi f(x)^2\,dx
\]
It looks pretty cool, although not quite as cool as twisted square cross-sections.

I wanted to mention another common application of $\mathscr{L}^2$ norms that probably is more familiar than any other: the statistical concept of variance. For functions $f$ defined on a continuous domain, we can define an average value:\[
\overline{f} = \frac1{b-a}\int_a^b f(x)\,dx.
\] which basically is the height of a rectangle over the same domain $[a,b]$ that has the same area as the area under $f$. For example, for \[
f(x) = \sin \left( x \right)\sin \left( t \right)+\frac{1}{3}\sin \left( 5x \right)\sin \left( 5t \right)+\frac{1}{3}\sin \left( 10x \right)\sin \left( 10t \right)+\frac{1}{5}\sin \left( 15x \right)\sin \left( 15t \right)
\]
(choosing $t=3.030303$), it looks like:


(the blue line in the middle is the mean value). The variance $\sigma^2$ is then a measure of how far $f$ is from its mean:\[ \sigma^2 = \frac{1}{b-a}\int_a^b (f(x) - \overline{f})^2\,dx. \] This of course can be visualized exactly as last time, namely, make a bunch of square cross sections about the line $y=\overline{f}$, and possibly do funny things to such squares, such as rotate it. But ... for kicks, let's add a factor of $\pi(b-a)$:\[ \pi(b-a)\sigma^2 = \int_a^b\pi (f(x) - \overline{f})^2\,dx, \] which is precisely the same quantity as the solid obtained by revolving $f(x)$ around its mean $y=\overline{f}$. The resulting solid is the title picture.

1 comment:

  1. In slot video games, for example, Wilds, Scatters, Multiplier, and another bonus features might assist you to as a loyal buyer to get the most of your stakes and winnings. These bonuses may range from one slot game to a different and should create a sense of choice of one over the opposite. 6️⃣ Does Hard Rock Casino NJ offer on-line sports betting? The Hard Rock on-line sportsbook is out there on desktop and mobile, so you can to|you possibly can} conveniently place your sports bets anyplace, anytime. You can discover all the important details about the sportsbook on our Hard Rock Sportsbook review page. For Android customers, issues are a bit tougher, outcome of|as a outcome 카지노 of} Google Play Store doesn’t allow Android apps for actual money gaming.

    ReplyDelete